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What Structural Representation Results
in Accurate Closed-Loop Model?
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The purpose of this study is to determine what reduced order
structural representation is most appropriate for coupling with a
control system. The goal is to choose a reduced order structural
model which retains as closely as possible the characteristics of
the closed-loop model with a full order structural representation.
By characteristics of the closed-loop model we mean the
closed-loop eigenvalues and the closed-loop transfer functions
from commands to loads and from commands to responses. This
process does not address the accuracy of the full-order model
(usually a finite element model) but only the loss of accuracy
associated with reducing the model. For the purposes of this study
we will limit ourselves to collocated sensors and actuators. The
choice of a structural representation for non-collocated sensors
and actuators is not so clear.



What Do We Mean by
Accurate Closed-Loop Model?

(1) Accurate Closed-Loop Frequencies:

e = IL_pprox.-_×=_d
ikexacd

(2) Accurate Closed-Loop Frequency Response:
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- From Commands to Responses

- From Commands to Input Loads

More specifically we will define errors as follows: For each
closed-loop frequency we will define a relative error as the
distance from the closed-loop pole based on the reduced model to
the closed-loop pole based on the full order model, divided by the
magnitude of the closed-loop pole based on the full-order model.
For the transfer functions from commands to input loads and from
commands to responses we will use the same measure to define a
relative error as a function of frequency. The reduced order model
is said to closely represent the closed-loop model when these error
measures are small.
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Structural Model is Highly Idealized

I Physical Structure II

I Full Order Model ]_

l Choose Shape Functions 11

As mentioned before we are only addressing one aspect of the
accuracy issue. The overall modeling process starts with a
physical structure or drawings of a physical structure and proceeds
to develop what we will call a full-order model. Whether this

model is based on finite elements or partial differential equations,
a number of assumptions were made in its derivation. For the
purposes of this study, we will assume that these assumptions are
valid to the extent that the full-order model accurately represents
modal frequencies in the control bandwidth and also the static
deflection due static loads applied at the controller interface
locations. The full order model, whether it is represented by a
finite element model or partial differential equations, is almost
certainly too large for practical control system analysis. The
model is reduced by choosing a small number of shape functions
(often normal modes). We are addressing the choice of these
shape functions, such that accuracy of the closed-loop model is
retained with as few functions as possible.
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Problem is Related to
Component Mode Synthesis

I I
Modal Reduction

/
Modal Reduction

. Normal Modes are not Good Representations |

t.

•Alternate Representations Developed I

A very similar problem is that of component mode synthesis
(CMS). In CMS the goal is to represent a number of substructures
by reduced order models based on shape functions such that when
these substructures are coupled, the modal frequencies of the
coupled model will be as accurate as possible. In the case of
control-structure interaction (CSI) we are simply replacing one the
substructures by a control system.

Researchers in CMS have demonstrated for more than 20 years
that the use of normal modes to represent the substructures can
result in large inaccuracies of the coupled model. A number of
alternate substructure representations have been developed that
result in much more accurate coupled models.
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Alternate Representations are
Statically Exact

- Residual Flexibility adds Static Contribution of ]1

Neglected Modes J

• Craig-Bampton Representation adds Static |

• i_1::iii t_e_:oltil_::r__s_:ie:static Solutions I

%._ *Implemented in NASTRAN as standard method j

Two methods for representing substructures in CMS have
emerged as standards. These are normal modes with addition of
residual flexibility and a Craig-Bampton representation. The use
Lanczos vectors rather than modes has also been suggested.

The residual flexibility method adds static flexibility that is not
represented by the retained normal modes. This flexibility can
either be represented as a purely static flexibility at the interface
or by a high frequency subsystem which contributes
quasi-statically at the interface. The residual flexibility subsystem
is uncoupled (orthogonal to) the retained normal modes.

The Craig-Bampton method combines a static reduction (Guyan
reduction) to the interface degrees of freedom with a set of normal
modes calculated with the interface degrees of freedom held fixed.

Lanczos vectors are generated by a series of static solutions and
do not require the solution of an eigenvalue problem. The
resulting mass and stiffness matrices are tri-diagonal rather than
diagonal.
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Craig-Bampton Representation
Standard in Structural Dynamics

[ [KBBO ,xB/ ,o/MBBMIB =1
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• Static shapes based on unit deflections of exterior DOF

• Guyan reduction to exterior DOF

• Static shapes = rigid body modes for rigid body control

• Relative not absolute DOF fixed at joints

• Results in accurate system models

J

The Craig-Bampton method is the most popular method used in
CMS. It is conceptually very simple, it is accurate and it is
implemented as the standard representation used by
MSC/NASTRAN's superelement capability. Two sets of shape
vectors are used. The first are static shapes based on unit
deflections at the interface. These are the same shape functions

used in the Guyan reduction process. The second are normal
modes calculated with the interface fixed. The Craig-Bampton

representation has the form illustrated above. While it is not
diagonal, it can be diagonalized. In this case it is very similar to
the residual flexibility representation, with a number of normal
modes combined with a set of high frequency modes representing
static flexibility at the interface.

When the Craig-Bampton representation is used in CSI for
systems with joints, the relative rotation rather than the absolute
rotation at the joint can be held fixed during the calculation of

"component" modes.



Why Do We Persist in Using
Normal Modes?

• Tradition

• Obtainable from any Structural Dynamics Routine

• Physical Interpretation

• Approximately Balanced (in sense of Moore)

• We Don't Understand Damping (modal damping)

• Small Amount of Data to Transfer

• Uncoupled Equations of Motion

Given that normal modes are known to generate poor solutions in
CMS problems, and given that alternate representations are better,
why are normal modes used so pervasively in CSI? There are a
number of reasons why normal modes are convenient. They are
standard output from any structural dynamics routine, and are
certainly more "standard" than the alternate representations used
in CMS. They have a physical interpretation. For lightly damped
systems with sufficiently separated frequencies they are
approximately balanced and cost decoupled, suggesting that they
are natural coordinates to use for model reduction. Modal
damping is simple to define. The amount of data transferred is
limited to modal frequencies and mode shape coefficients. And
finally, the resulting equations of motion are uncoupled, resulting
in very fast simulations.
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Alternate Representations
can be Diagonalized

Alternate Reduced
Order Model

Eigenvalue
Solution

Diagonalized
Representation

• Eigenvalue Problem is Small (size of reduced order
model)

• Diagonalized Representation has Many Advantages

of Normal Mode Representation

J

Many of the advantages of the normal modes representation are
shared by the Craig-Bampton representation, if the reduced order
model is diagonalized. The diagonalization involves an
eigenvalue solution on the reduced order model, which is typically
very fast. The resulting "modes" will include some low frequency
normal modes along with some high frequency residual modes
which contribute quasi-statically in the low frequency range. The
coordinates are now balanced and cost-decoupled with respect to
the reduced order model, though not necessarily with respect to
the full order model. The amount of information to be transferred

is again limited to frequencies and mode shape coefficients and
the equations of motion are uncoupled. The high frequency
modes may need to be treated carefully during a transient
simulation, though extra damping can be added without affecting
their contribution in the frequency range of interest.
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Summary of Structural

Representations

• Goal is Accurate Closed-Loop Model

- Accurate Closed-Loop Frequencies

- Accurate Closed-Loop Transfer Functions

• Choice of Shape Functions can be Motivated by CMS

• Alternate Representations are Statically Exact

• Alternate Representations can be Dia_lonalized

In summary, the goal of this study is to select a minimal number
of shape functions that accurately represent the closed-loop model.
While normal modes are often used, alternate representations
developed in the field of CMS can also be applied. These
alternate representations are statically exact at the interface points
and can be diagonalized to recover some of the advantages of
normal modes. Following, we will show two examples which
demonstrate that the Craig-Bampton representation does in fact
result in significantly more accurate closed-loop models than the
normal modes representation.



Hinged Beam Provides
Simple Example

120 Mode,I
1st Flexible Frequency at 13.5 Hz

Z

PD Controller Designed for1 Hz Control Mode'll

One might expect that as a control system became stiffer with
respect to the structure, a set of fixed interface modes would be
more appropriate, while for a soft control system the free interface
modes would be more appropriate. It is certainly true, that as the
control system gets stiffer, the inaccuracies associated with the use
of free interface modes become larger, however, this simple
example shows that the errors can be large even when the control
system is significantly softer than the structure. We have chosen
PD control gains to give a rigid body frequency of 1 Hz and a
damping ratio of 70.7%. The actual frequency and damping ratio
will differ due to the flexibility of the beam. The "full-order"
model is the finite element model with 20 degrees of freedom.



Craig-Bampton Modes Result in _

More Accurate Control Frequency
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The actual control frequency based on the full 20 degree of
freedom model is 1.05 Hz with a damping ratio of 66.2%. Using
even one Craig-Bampton mode results in an exact representation
of the frequency, while seven normal modes are required to reduce
the error to less than 1%.



_ Craig-Bampton Modes Result in TM

More Accurate 1st Flexible Frequency

Normalized
Error

The first closed-loop flexible mode is at 7.54 Hz and is critically
damped. In this case two Craig-Bampton modes represent the
closed-loop mode exactly, while thirteen normal modes are
required to reduce the error to less than 10%. In this case the error
in the closed-loop frequency using normal modes is drastic.



Normalized
Error
(DB)

1%

Examining the frequency response from a rotational command to a
rotational response tells the same story. Using Craig-Bampton
modes, the error is less than 1% up to a frequency of 1000 rad/sec,
while using normal modes, the error exceeds 1% at just over 6
rad/sec.



 SPACE STATION MODEL IS MORE 
REALISTIC
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The methods presented here were developed for Space Station
Freedom, which is a complex structure with very high modal
density. Examining pitch control of the Space Station provides a
more realistic example. In this case the first significant flexible
mode interacting with the control system is near 0.2 Hz. The
control gains are chosen to provide a rigid body control frequency
of 0.01 Hz and a damping ratio of 70.7%. Once more, this is a
system where the control frequency is more than an order of
magnitude below the first flexible frequency. In this case it is not
possible to calculate the true "full-order" closed-loop model
because the finite element model has over 1000 degrees of
freedom, so the exact model is one based on 155 Craig-Bampton
modes. The two reduced order models are each based on 41
flexible modes. The first based on 41 Craig-Bampton modes, and
the second based on 41 normal modes.



Craig-Bampton Modes Result in
More Accurate T.F. to Response

Transfer Function from Pitch Command to Pitch Response

Normalized
Error
(DB)

The error in the transfer function from a rotational command to a

rotation about the pitch axis again illustrates the improved
accuracy associated with the Craig-Bampton representation. In
this case the reduced order model based on 41 Craig-Bampton
modes is accurate (less than 1% error) up to a frequency of 0.5
rad/sec, while the reduced order model based on 41 normal modes
is only accurate up to a frequency of 0.05 rad/sec.



Craig-Bampton Modes Result in
More Accurate T.F. to Torque

Transfer Function from Pitch Command to Pitch Torque
2O
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Results for the transfer function from rotational commands to

torques applied by the controller to the structure suggest similar
conclusions. Again the model based on Craig-Bampton modes is
significantly more accurate than the model based on normal
modes.
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CONCLUSIONS

• Alternate Modal Representations are Available and
Easy to Implement

• Key Difference is Exact Static Representation

• Alternate Modal Representations can be Diagonalized

• Alternate Modal Representations Result in More
Accurate Closed-Loop Models with Collocated
Sensors and Actuators

• Non-Collated Sensors and Actuators Less Clear

J

In conclusion, the use of an alternate structural representation,
such as the Craig-Bampton representation, can result in much
more accurate results than are obtained when using a truncated set
of normal modes. The key difference between the alternate
representations and the normal mode representation is the
incorporation of a static solution. The alternate representations do
not necessarily generate diagonal mass and stiffness matrices, but
they can be diagonalized at a minimal effort in order to capture
some of the advantages of normal modes.

All the results presented here are based on collocated sensors and
actuators. The issue with non-collocated sensors and actuators is

somewhat different since it is not clear which points should be
held fixed during the modal solution. This is an issue that still
needs to be resolved.


